Wykorzystujemy pliki cookies i podobne technologie w celu usprawnienia korzystania z serwisu Chomikuj.pl oraz wyświetlenia reklam dopasowanych do Twoich potrzeb.

Jeśli nie zmienisz ustawień dotyczących cookies w Twojej przeglądarce, wyrażasz zgodę na ich umieszczanie na Twoim komputerze przez administratora serwisu Chomikuj.pl – Kelo Corporation.

W każdej chwili możesz zmienić swoje ustawienia dotyczące cookies w swojej przeglądarce internetowej. Dowiedz się więcej w naszej Polityce Prywatności - http://chomikuj.pl/PolitykaPrywatnosci.aspx.

Jednocześnie informujemy że zmiana ustawień przeglądarki może spowodować ograniczenie korzystania ze strony Chomikuj.pl.

W przypadku braku twojej zgody na akceptację cookies niestety prosimy o opuszczenie serwisu chomikuj.pl.

Wykorzystanie plików cookies przez Zaufanych Partnerów (dostosowanie reklam do Twoich potrzeb, analiza skuteczności działań marketingowych).

Wyrażam sprzeciw na cookies Zaufanych Partnerów
NIE TAK

Wyrażenie sprzeciwu spowoduje, że wyświetlana Ci reklama nie będzie dopasowana do Twoich preferencji, a będzie to reklama wyświetlona przypadkowo.

Istnieje możliwość zmiany ustawień przeglądarki internetowej w sposób uniemożliwiający przechowywanie plików cookies na urządzeniu końcowym. Można również usunąć pliki cookies, dokonując odpowiednich zmian w ustawieniach przeglądarki internetowej.

Pełną informację na ten temat znajdziesz pod adresem http://chomikuj.pl/PolitykaPrywatnosci.aspx.

Nie masz jeszcze własnego chomika? Załóż konto

lm317-2.gif

Teoria, wzory, schematy, varia  - lm317-2.gif
Download: lm317-2.gif

1 KB

(313px x 176px)

0.0 / 5 (0 głosów)
wzór na obliczenie R2 (o ile zechcemy sami ustalić żądane napięcie wyjściowe --> nawet do około trzydziestu kilku wolt)



OBJAŚNIENIA:

R1 --> wartość rezystora R1
(optymalnie 240 Ω --> wtedy "wyciśniemy" do 1.5 A)

Vo --> napięcie, jakiego sobie zażyczymy na wyjściu

Vref --> napięcie referencyjne układu (zawsze 1.25 V)

-----------------------

wartości napięć --> zawsze w woltach [V]
wartości rezystorów --> zawsze w omach [Ω]

źródło: ixus-world.de

Komentarze:

Nie ma jeszcze żadnego komentarza. Dodaj go jako pierwszy!

Aby dodawać komentarze musisz się zalogować

UWAGA!!! Wszystkie zawarte w niniejszym folderku schematy należy traktować jako projekty edukacyjno-badawczo-poznawcze, choć większość z nich faktycznie może znaleźć praktyczne zastosowanie w życiu codziennym. Niektóre układy mogą być bardzo niebezpieczne dla życia i zdrowia (np. projekty wysokonapięciowe).

TRAKTOWANIE WYSOKIM NAPIĘCIEM ISTOT ŻYWYCH JEST ZDECYDOWANIE NIE NA MIEJSCU!!!

Inne mogą być źródłem mniejszych lub większych zakłóceń radiokomunikacyjnych (np. telegraf iskrowy, induktory, odbiorniki reakcyjne). Należy zawsze mieć na względzie rozum oraz stosowne środki ostrożności, a także każdorazowo sprawdzać, czy zbudowany przez nas układ nie będzie zakłócał innych urządzeń elektronicznych. Nie chodzi tu nawet o przepisy prawne, ale o podstawową zasadę obowiązującą w cywilizowanych obszarach naszej oraz innych galaktyk: Nie czyń drugiemu, co Tobie niemiłe. Układy wysokonapięciowe MUSZĄ być zbudowane/eksploatowane ostrożnie, solidnie, z izolacjami i OBUDOWAMI --> miej na względzie, że np. jakiś kotek, piesek czy małe dziecko mogłoby tego dotknąć. Układy siejące w paśmie radiokomunikacyjnym należy sprawdzić pod kątem utrudniania życia np. sąsiadom. Niektóre układy, np. transmitery czy prezentowane tu nadajniki AM/FM mogą ewentualnie wypluwać z siebie moc większą niż prawnie dozwoloną dla urządzeń amatorskich nie wymagających koncesji czy pozwoleń. Krótkotrwałe i edukacyjne użycie na pewno nie będzie problemem, ale inne zastosowania należy już rozpatrzyć indywidualnie. W razie wątpliwości można zawsze wysłać maila z zapytaniem do odpowiednich instytucji nadzorujących pasma elektromagnetyczne wzgl. zasięgnąć porady na branżowych forach internetowych.

W anteny zewnętrzne (np. do odbiorników detektorowych) zawsze może przywalić piorun. Nie słucha się ich więc w czasie burz (i odpowiednio uziemia).

Moc wyjściową transmiterów czy poziom zakłóceń generowanych przez odbiorniki reakcyjne można redukować/niwelować odpowiednim doborem (niższego) napięcia zasilania lub poprzez ekranowanie wzgl. inne modyfikacje techniczne.

OSOBY CHCĄCE ZBUDOWAĆ SWOJE PIERWSZE W ŻYCIU RADIO POWINNY W PIERWSZEJ KOLEJNOŚCI ZAPOZNAĆ SIĘ Z PROJEKTAMI KOLEGI PRESKALERA.

WSZYSTKIE MATERIAŁY UMIESZCZONE W NINIEJSZYM FOLDERKU POCHODZĄ Z OGÓLNODOSTĘPNYCH ŹRÓDEŁ INTERNETOWYCH I ZAOPATRZONE ZOSTAŁY W INFORMACJĘ O ICH POCHODZENIU. PEWNA NIEWIELKA CZĘŚĆ TREŚCI JEST MOJEGO (WSPÓŁ)AUTORSTWA. JEŻELI UZNASZ, ŻE JAKIŚ PLIK NARUSZA TWOJE/CZYJEŚ EGO LUB ZOSTAŁ OPISANY NIEWŁAŚCIWIE, TO POINFORMUJ MNIE PROSZĘ O TYM NP. POPRZEZ WYSŁANIE CHOMIKOWEJ WIADOMOŚCI.
Inne pliki do pobrania z tego chomika
Teoria, wzory, schematy, varia  - lm317-2.gif
wzór na obliczenie R2 (o ile zechcemy sami ustalić żądan ...
wzór na obliczenie R2 (o ile zechcemy sami ustalić żądane napięcie wyjściowe --> nawet do około trzydziestu kilku wolt) OBJAŚNIENIA: R1 --> wartość rezystora R1 (optymalnie 240 Ω --> wtedy "wyciśniemy" do 1.5 A) Vo --> napięcie, jakiego sobie zażyczymy na wyjściu Vref --> napięcie referencyjne układu (zawsze 1.25 V) ----------------------- wartości napięć --> zawsze w woltach [V] wartości rezystorów --> zawsze w omach [Ω] źródło: ixus-world.de
Teoria, wzory, schematy, varia  - dzielnik_napięcia.gif
Dzielnik napięcia wraz z całym niezbędnym zapleczem mate ...
Dzielnik napięcia wraz z całym niezbędnym zapleczem matematycznym. źródło: krzysztofg.elb.vectranet.pl
Teoria, wzory, schematy, varia  - prawo_ohma.gif
Przykład praktycznego wykorzystania: Mam sobie małe k ...
komentarz1
Przykład praktycznego wykorzystania: Mam sobie małe kieszonkowe chińskie radyjko zasilane dwoma małymi paluszkami (AAA), czyli 2 x 1.5 V = 3 V. Podłączając te bateryjki do radyjka poprzez amperomierz stwierdzam, że przy największej sile głosu radyjko pobiera 30 mA (= 0.03 A). Chciałbym to radyjko poprzez opornik (= rezystor) zasilić z akumulatora samochodowego (12 V). Jak policzyć wartość tego rezystora (korzystając z prawa Ohma)? Ano tak: Rv = Uges - Urad / Irad Rv --> taki opornik będzie potrzebny Uges --> napięcie zasilania (przed opornikiem; w woltach) - --> minus (odejmujemy) Urad --> napięcie, jakiego wymaga radyjko (w woltach) / --> podzielić przez (kreska ułamkowa) Irad --> natężenie (= prąd), jaki pobiera moje radyjko w amperach 12 V - 3 V / 0.03 A = 9 V / 0.03 A = 300 Ω POTRZEBNY BĘDZIE OPORNICZEK 300 Ω A teraz szybko policzmy, na jaką moc trzeba kupić/założyć opornik: Pv = (Uges - Urad) x Irad ponieważ: moc = napięcie x natężenie Pv = (12 V - 3 V) x 0.03 A = 9 V x 0.03 A = 0.27 W = 270 mW POTRZEBNY BĘDZIE OPORNIK O OBCIĄŻALNOŚCI MINIMUM 0.27 W, CZYLI NAJBLIŻSZY DOSTĘPNY NA RYNKU TO 0.5 W (BO 0.25 W BĘDZIE CIUTKĘ ZA SŁABY, ALE OD WIELKIEJ BIEDY TEŻ MÓGŁBY BYĆ UŻYTY) grafika: fizyka.biz przykład obliczeń: Marcin Perliński
Teoria, wzory, schematy, varia  - diody-led-napięcia-przewodzenia.jpg
Prosto jak krowie na rowie. Napięcia przewodzenia dla (p ...
Prosto jak krowie na rowie. Napięcia przewodzenia dla (pojedynczych) diodek LED o różnych kolorach emitowanego światła. A tak liczymy opór ograniczający dla diody LED: Rv = Uges - Uled / Iled Rv --> wartość potrzebnego rezystora (w Ω) Uges --> napięcie zasilające układ (przed rezystorem; w woltach) - --> minus (odejmowanie) Uled --> napięcie przewodzenia naszej diody LED (w woltach) / --> podzielić przez (kreska ułamkowa) Iled --> natężenie (= prąd) w amperach, jaki normalnie świecąc pożera nasza dioda LED, np. większość zwykłych czerwonych diodek LED pobiera około 20 mA, czyli 0.02 A Przykład obliczenia dla czerwonej diody LED (20 mA) zasilanej (poprzez rezystor) napięciem 12V: 12 V* - 1.6 V** / 0.02 A*** = 10.4 V / 0.02 A = 520 Ω**** * --> napięcie zasilania układu (przed rezystorem; w woltach) ** --> napięcie przewodzenia dla czerwonej diody LED (w woltach) *** --> pobór prądu typowej czerwonej diody LED (20 mA przeliczone na ampery, czyli 0.02 A) **** --> taki opornik będzie potrzebny (w Ω) -------------------------------- A teraz wyliczymy, jaką dokładnie moc (w watach wzgl. miliwatach) pobiera nasza dioda LED, dla której powyżej wyliczyliśmy potrzebny rezystor: Pv = (Uges - Uled) x Iled ponieważ: moc = napięcie razy natężenie [ P = U x I ], wynik będzie w watach (W) Pv --> moc (w watach) Uges --> napięcie zasilania układu (przed rezystorem), w woltach - --> minus (odejmowanie) Uled --> napięcie przewodzenia dla diody LED, w woltach x --> razy (mnożymy) Iled --> pobór prądu diody LED Pv = (12 V - 1.6 V) x 0.02 A = 0.208 W = 208 mW CZYLI KUPUJĄC/DOBIERAJĄC REZYSTOR OGRANICZAJĄCY DLA TEJ DIODKI LED NALEŻY MIEĆ NA WZGLĘDZIE, ABY JEGO OBCIĄŻALNOŚĆ NIE BYŁA MNIEJSZA NIŻ 0.2 W (NAJBLIŻSZE "MOCOWO" DOSTĘPNE W HANDLU REZYSTORY MAJĄ 0.25 W, ALE OCZYWIŚCIE MOŻNA TEŻ DAĆ "MOCNIEJSZY WATOWO") grafika: astra-g.pl przykład obliczeń: Marcin Perliński
Teoria, wzory, schematy, varia  - 555-1.png
Drugi podstawowy schemat z układem 555 (multiwibrator as ...
komentarz1
Drugi podstawowy schemat z układem 555 (multiwibrator astabilny, tzw. free running multivibrator). Na wyjściu (nóżka nr 3) można wyczarować drgania od ułamków herca [Hz] do nawet ponad 300 kiloherców [kHz]. Wartości elementów dobieramy z poniższego wykresu lub też z nieco przeze mnie dopieszczonego wzoru: f[Hz] = 1460 / (R1 [kΩ] + R2 [kΩ]) x C [μF] / --> podzielić przez (kreska ułamkowa) x --> razy (mnożymy) Wzorek "ułatwiłem", żeby można było od razu wpisywać kiloomy oraz mikrofarady. Podpowiedź: 0.1 μF = 100 nF 0.01 μF = 10 nF 0.001 μF = 1 nF 0.0001 μF = 100 pF opracowanie: Colin Mitchell
Teoria, wzory, schematy, varia  - powielacz_napięcia_6_kV.png
wszystkie diody* oraz kondensatory** na napięcie 400 V ( ...
wszystkie diody* oraz kondensatory** na napięcie 400 V (lub wyższe), a rezystory półwatowe lub większe * krzemowe ** MKSE (poliestrowe) zaleca się zachowanie dużych odległości pomiędzy elementami i połączeniami (nawet do 1 cm) można wykorzystać do zasilania laserów gazowych, układów odchylania, budowy joniztora powietrza (jonizator można zrobić z mniejszej ilości diodek, bo działa już przy niższych napięciach) powinna na tym pójść także niewielka "drabina Jakuba" (nie testowałem) układ najłatwiej sprawdzić przykładając końcówkę DOBRZE IZOLOWANEGO śrubokręta w pobliże wyjścia układu (BEZ DOTYKANIA!!!) --> powinna się pojawić iskra o długości kilku milimetrów (5 - 7 mm) UWAGA!!! BARDZO WYSOKIE NAPIĘCIE. MOŻE KOPNĄĆ NAWET "NA ŚMIERĆ"!!! autor schematu: Antoni Białoszewski
Teoria, wzory, schematy, varia  - prostownik3.jpg
najprostszy prostownik dwupołówkowy z mostkiem Graetza - ...
najprostszy prostownik dwupołówkowy z mostkiem Graetza --> takiego używa się zazwyczaj do zasilania urządzeń elektronicznych (po wygładzeniu tętnień przy pomocy większego kondensatora elektrolitycznego i przepuszczeniu przez stabilizator) UWAGA NA WYSOKIE NAPIĘCIE!!! źródło: elektroda.pl modyfikacje: Marcin Perliński
Teoria, wzory, schematy, varia  - pb137-2.gif
najprostszy układ aplikacyjny z PB137
najprostszy układ aplikacyjny z PB137
Teoria, wzory, schematy, varia  - oświetlenie_klatki_schodowej_sterowane_z_2_miejsc.gif
do tego wystarczą 2 proste przełączniki schodowe (z trze ...
do tego wystarczą 2 proste przełączniki schodowe (z trzema stykami) UWAGA NA WYSOKIE NAPIĘCIE!!! źródło: ise.pl
Teoria, wzory, schematy, varia  - oświetlenie_klatki_schodowej_sterowane_z_3_miejsc_1.gif
bierzemy jeden przełącznik krzyżowy (z czterema stykami) ...
bierzemy jeden przełącznik krzyżowy (z czterema stykami) i dwa schodowe (trójstykowe) żarówka jest skrajnie z prawej strony (taki "X") UWAGA NA WYSOKIE NAPIĘCIE!!! autor schematu: pitri61 (na forum muratordom.pl)
więcej plików z tego folderu...
Zgłoś jeśli naruszono regulamin
W ramach Chomikuj.pl stosujemy pliki cookies by umożliwić Ci wygodne korzystanie z serwisu. Jeśli nie zmienisz ustawień dotyczących cookies w Twojej przeglądarce, będą one umieszczane na Twoim komputerze. W każdej chwili możesz zmienić swoje ustawienia. Dowiedz się więcej w naszej Polityce Prywatności